The EMITT Study: Development and Evaluation of a Medication Information Transfer Tool

Annemarie Cesta, Jana M Bajcar, Stephanie W Ong, and Olavo A Fernandes

BACKGROUND: Continuity of care is required as patients move from the care of one pharmacist to another. The appropriate transfer of medication information between pharmacists as well as to patients at these times is essential in order to prevent drug-related problems (DRPs).

OBJECTIVE: To develop a tool to transfer medication information between various pharmacists caring for the same patients. Secondary objectives were to evaluate the tool based on utility in practice and satisfaction of pharmacists.

METHODS: The project consisted of a needs assessment involving in-depth interviews with patients and pharmacists and a literature review. These data were used to develop an optimal tool for medication information transfer between pharmacists in different practice settings. The tool was evaluated in a feasibility pilot for potential utility and pharmacist satisfaction.

RESULTS: The tool created called EMITT (electronic medication information transfer tool) facilitates the communication of information to outpatient pharmacists including a letter and an up-to-date list of the patient’s drugs. A total of 187 medication issues were communicated within 40 transferred letters, 61 of which required active follow-up, which potentially prevented 348 DRPs if the receiver of the information acted on the information that was provided. The 3 most common issues that required follow-up were restarting a held medication (n = 13), adjustment of doses based on laboratory results (n = 11), and starting a new indicated medication in the future (n = 7).

CONCLUSIONS: A tool can be created to help address the gap in communication between pharmacists when patients move between interfaces of care by evaluating the needs of healthcare professionals involved in the information transfer process. It is envisioned that the elements of our tool can be easily adapted to other institutions to improve medication information transfer.

KEY WORDS: drug-related problems, medication information transfer.

If an effective communication tool could be developed and implemented, it may serve to prevent DRPs and thus improve patient safety. Pharmacists can help reduce DRPs by creating strategies and tools that enhance continuity of care between different practice environments (hospital, community, ambulatory clinics), which in turn fosters seamless care.

The aim of this project was to design a tool to address this information transfer gap. The goal was to enhance the communication of medication information among multiple pharmacists who may be in a position to accept responsibility for a patient’s care. The secondary objectives were to evaluate the tool for utility and pharmacist satisfaction in clinical practice.

Methods

The study was divided into 3 phases: needs assessment that consisted of a literature review and in-depth interviews with pharmacists and patients, tool design, and feasibility pilot.

LITERATURE REVIEW

We examined a number of studies that described effective tools to transfer patient and medication information among pharmacists in different practice sites by performing a search of the literature on MEDLINE (1966–January 2006), PubMed (1950–January 2006), Web of Science (1945–January 2006), and International Pharmaceutical Abstracts (1970–January 2006) using key words and map terms such as seamless care, continuity of care, drug-related problems, tools, pharmacists, and information transfer.

NEEDS ASSESSMENT

Individual in-depth interviews were chosen as the data collection method to better understand the needs of the primary stakeholders: pharmacists and patients. One-on-one interviews were conducted with 6 pharmacists within the same institution in the areas of inpatient nephrology, general medicine, hemodialysis ambulatory clinic, and outpatient retail pharmacy. The goal of the pharmacist interviews was to examine their experiences and perspectives on the transfer of medication information. These findings were then used to describe and characterize pharmacists’ needs that should be considered when designing a tool for medication information transfer.

Individual interviews were also conducted with 10 patients with ESRD who provided informed consent. The goal of these interviews was to discover each patient’s perceptions and experiences regarding the transfer of their medication information among the various pharmacists they encountered regularly.

TOOL DESIGN

The project team reflected on the findings from the needs assessment including literature review and interviews to identify 11 consensus criteria that define the content and format of the new medication information transfer tool (Table 1).

After establishing the most appropriate format and mode of transfer of the tool, a preliminary design was presented to the Information Technology Department at our institution, who developed an electronic format of the tool.

FEASIBILITY PILOT

The objectives of the feasibility pilot were to evaluate the potential utility of the newly designed tool in delivering seamless care and the perception and satisfaction of various pharmacists using the tool and receiving the patient medication information output produced by the tool. First, 40 outputs of the tool produced by the hospital pharmacists on the general medicine and nephrology units were analyzed by the research team to determine (a) where the information was being sent, (b) the types of data being communicated, and (c) the DRPs that the transfer of this information may have potentially prevented. Part (c) was done by asking the question, “If the information contained in the letter was not communicated to the next pharmacist, which of the 8 established categories of DRPs could have potentially occurred?”

Nine hospital pharmacists were asked to complete a survey to gather feedback on whether the tool met the initial design criteria, how often and in what situations the tool was being used, additional comments about general satisfaction with the tool, and suggestions for further improvement. Four outpatient pharmacists were asked to review a sample output (Letter and Patient Medication Schedule) and also completed a survey to assess the content and usefulness of the information.

Results

LITERATURE REVIEW

Of the studies discussing tools to transfer information, none included an electronic means of information transfer. In addition, we were not able to identify any published studies that examined the transfer of medication information within the same institution, such as between inpatient hospital pharmacists and ambulatory clinic pharmacists. Furthermore, most of the published studies evaluated tools designed by hospital pharmacists without performing a needs assessment of key stakeholders involved in medication information transfer (eg, patients and pharmacists) prior to the design of the tool. Therefore, based on the review of the literature, there appeared to be gaps in our understanding of optimal features that need to be incorporated into a tool to meet the medication information transfer needs of patients who frequently move in and out of the in-

<table>
<thead>
<tr>
<th>Table 1. Criteria for Inclusion of Features into the Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver must be able to use information</td>
</tr>
<tr>
<td>Information must support receiver’s role</td>
</tr>
<tr>
<td>Information must be used by at least 1 of the 3 pharmacists being studied</td>
</tr>
<tr>
<td>Must be feasible to provide information</td>
</tr>
<tr>
<td>Information must adhere to privacy laws (legally appropriate)</td>
</tr>
<tr>
<td>Information must be accurate and up to date</td>
</tr>
<tr>
<td>Accountability for the information must be recognized</td>
</tr>
<tr>
<td>Information provided should not result in more DRPs</td>
</tr>
<tr>
<td>Information must support prescribing practice of other healthcare professionals</td>
</tr>
<tr>
<td>Information must support the prevention of DRPs during vulnerable moments</td>
</tr>
<tr>
<td>Information must support patients in their medication-taking practices (routines)</td>
</tr>
</tbody>
</table>

DRPs = drug-related problems.
patient hospital setting. To address this gap, we proposed that an ideal tool for communication between pharmacists would consist of an electronic means; be accessible within the same institution between inpatient, ambulatory, and community settings; have the ability to be sent/transferred to other practice settings; and target the needs of the specific patient population.

DESCRIPTION OF THE TOOL

The research team reaffirmed their initial position that an electronic tool is the optimal format to transfer medication information between pharmacists. The final tool created was named EMITT (electronic medication information transfer tool; Figure 1). The tool is interfaced with the hospital patient information system and includes preselected information such as drugs prescribed in the hospital, allergies, and admission/discharge date from the electronic medication records. EMITT can be accessed by all pharmacists responsible for the patient’s care within the institution and can be printed to be transferred to other pharmacists.

EMITT provides pertinent medication information in letter format to community or clinic pharmacists and includes information on new and discontinued drugs or any dose changes that occurred during a patient’s hospital stay along with the rationale for these changes. It also prints a current medication list including each drug’s name, dose, and directions. EMITT also conveys any follow-up clinical issues that the next pharmacist caring for the patient after discharge should be aware of, including unresolved medication issues.

A second part of the tool that was deemed important from the patient interviews is the medication schedule (Figure 2). The schedule lists the drugs in one column and checks off the time of the day they should be taken. The schedule includes a comments column to type in indications for drugs or any special instructions to the patient. EMITT also has the ability to print a wallet card (a smaller and more easily transportable version of the patient’s medication list).

FEASIBILITY PILOT

Of the 40 letters analyzed, 48% were transferred to an ambulatory dialysis clinic, 20% to a rehabilitation center, and 33% to a community pharmacy. A total of 187 medication issues were communicated within the letters, 32% required active follow-up (n = 61), and others were for information purposes only and did not require immediate action (n = 126). A medication issue included both DRPs that required follow-up and monitoring and a situation that required communication of medication information for future clarification or for information purposes only. The main type of information that did not require further action included explanation of changes to a patient’s preadmission medications. Examples of issues that required follow-up action included need to restart a drug, initiation of an indicated medication, laboratory monitoring to adjust doses, stop dates, and additional counseling needed (Figure 3).

The impact of EMITT on patient clinical outcomes was not specifically measured nor quantified as part of our feasibility pilot. However, based on the type of information included in the letters, the numbers and types of DRPs potentially prevented through the transfer of the 40 letters were estimated. In total, potentially 348 DRPs may have been avoided if the receiver of the letter acted on the information that was provided. The 3 most common types of DRPs potentially prevented through the communication of issues that required active follow-up included lack of an indicated medication (n = 20), overdose (n = 22), and underdosage (n = 15). The 3 most common DRPs potentially prevented through the transfer of the information that did not require immediate follow-up included improper drug selection (n = 89), lack of an indicated medication (n = 72), and adverse drug reaction (n = 32).

The inpatient pharmacists surveyed agreed that EMITT met the consensus criteria outlined by the project team and described the tool as user friendly. They found it to be a useful way to facilitate communication between pharmacists and described it as a good method of contributing to the continuity of care of patients. Pharmacists also felt that the letter has the potential to facilitate the prevention of DRPs once a patient is discharged and that the medication schedule seems to improve the patients’ understanding of their drug therapy. Overall, the outpatient pharmacists who were surveyed were also pleased with the tool. They indicated that the information provided was useful in understanding the needs of their patients and allowed them to effectively follow up with patient issues after discharge.

Factors that prevented the pharmacists from using EMITT for all patients included lack of time, short patient admissions, no changes to medications, and discharges they were unaware of. The information in the tool was also shown to other healthcare professionals in the hospital to facilitate the discharge process for patients.

The average time ± SD spent by inpatient pharmacists in creating a new letter and medication grid was 15.5 ± 5.5 minutes. The pharmacists indicated that, in the case of certain patients, EMITT patient reports were also read by community care access center nurses, social workers, medical residents, and family physicians. The pharmacists identified the most common types of patients for whom they chose to use EMITT, which included patients on many agents, with many medication changes, who required discharge counseling, and who managed their drug therapy at home.

Discussion

From the findings of our study, we believe that EMITT may be beneficial for additional healthcare professionals,
University Health Network
Toronto General Hospital Toronto General Hospital

Dear Pharmacist,

Your patient was admitted on October 29, 2005 and discharged on November 15, 2005.

Documented Allergies:

- Penicillin
 - Hives 10 years ago; tolerates cefazolin

The following are medication changes that have occurred:

New Medications

- **Ferrous Gluconate 300mg TID**
 - Patient found to be anemic in hospital. Values as of Nov 2/05: Ferritin = 100ng/ml, TSH = 0.15
- **Omeprazole 40mg daily**
 - Patient experienced non-H. pylori upper GI bleed in hospital. Duration of therapy will be reassessed by GI physician in 8 weeks.
- **Ciprofloxacin 500mg BID**
 - Urinary tract infection. E. Coli in urine sensitive to Ciprofloxacin; plan to treat for total of 7 days. Started Nov 13/05.

Stopped Medications

- **Aspirin 81mg daily**
 - Patient experienced an upper GI bleed
- **Meloxicam 7.5mg daily**
 - Patient was taking 2-3 times a day. May have contributed to bleed and not to be restarted

Dose Changes

- **Atorvastatin increased to 40mg HS**
 - Lipid values measured on Nov 2/05 found to be elevated: LDL = 4.1 mmol/L, HDL = 0.98 mmol/L, Total Chol/HDL = 5.3 mmol/L, TG = 1.12 mmol/L
- **Calcium carbonate increased to 1000mg elemental calcium TID with meals**
 - Phosphate value found to be high @ 2.1 mmol/L on Nov 2/05. See below
- **Metoprolol increased to 50mg BID**
 - Blood pressure was elevated in hospital (163/90 mmHg at highest). Target blood pressure is 130/80 mmHg.

Please find a current list of medications attached.

The following are unresolved/ongoing medication related issues:

- High lipid values
 - Please re-check lipids in 3 months and suggest adjustment of atorvastatin dose accordingly
- Patient was taking Aspirin 81mg EC tablet daily for cardiac protection. It was stopped due to GI bleed. Dr. Smith (GI physician) to reassess restarting ASA at next appointment
 - Please follow-up with re-initiation of ASA

Other issues include:

- **Education/Counseling**
 - Patient may benefit from additional discussion on use of NSAIDs for pain. Meloxicam was being taken at higher doses than prescribed. Patient was educated on adverse effects of NSAIDs and instructed to use acetaminophen for pain in the future.
- **Monitoring needed**
 - Continue to monitor blood pressure and suggest titration of medications accordingly. Monitor phosphate levels and suggest adjustment of phosphate binder accordingly. Re-check iron profile in 3 months.

Please attach this document with the patient’s prescriptions if possible. Feel free to contact me if you have any questions or concerns.

Thank you,

Cesta Annesmarie, Pharmacist

Phone: 416-340-4800 x1234
Page: 416-555-8856

Verbal medication consent was obtained from the patient to release the above information on November 15, 2005

<table>
<thead>
<tr>
<th>Current medication list for</th>
<th>as of November 15, 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug and dose</td>
<td>Directions</td>
</tr>
<tr>
<td>Atorvastatin 40 MG tablet</td>
<td>Take 1 tablet at bedtime</td>
</tr>
<tr>
<td>Calcium 0.25 MCG capsule</td>
<td>Take 1 capsule once daily</td>
</tr>
<tr>
<td>Calcium carbonate 1250 MG tablet (500 MG elemental Ca++)</td>
<td>Take 2 tablets three times a day with meals</td>
</tr>
<tr>
<td>Ciprofloxacin 500 MG tablet</td>
<td>Take 1 tablet two times a day for 4 more days. Separate from calcium by at least 2 hours.</td>
</tr>
<tr>
<td>Darbepetin (in 60MCG/0.3ML syringe)</td>
<td>Inject 60 MCG subcutaneously every Friday</td>
</tr>
<tr>
<td>Docusate sodium 100 MG capsule</td>
<td>Take 1 capsule two times a day</td>
</tr>
<tr>
<td>Ferrous fumarate 300 MG tablet</td>
<td>Take 1 tablet at bedtime</td>
</tr>
<tr>
<td>Metoprolol 25 MG tablet</td>
<td>Take 2 tablets (50 MG) two times a day</td>
</tr>
<tr>
<td>Omeprazole 20 MG tablet</td>
<td>Take 2 tablets (40 MG) once daily</td>
</tr>
<tr>
<td>Ramipril 5 MG capsule</td>
<td>Take 1 capsule once daily</td>
</tr>
<tr>
<td>Acetaminophen 325 MG tablet</td>
<td>Take 1-2 tablets every 4 hours as needed for pain</td>
</tr>
</tbody>
</table>

Figure 1. Example of the letter for the pharmacist generated from EMITT. The letter includes information such as new medications, stopped medications, dose changes, and rationale for these changes. Other features of the letter include allergies, nursing unit, patient admission and discharge date, and hospital pharmacist name and contact number. Outstanding clinical and monitoring issues are also communicated within the letter. EMITT = electronic medication information transfer tool.
such as physicians, to help with information transfer. The tool may also influence patients to carry an accurate medication list with them when admitted to the hospital, which will, in turn, decrease the need for complex medication reconciliation on admission.

A Swedish study showed that many drug errors occur when patients are transferred between primary and secondary care. These data further support research from the Institute for Healthcare Improvement, which highlights that poor communication of drug information at transition points is responsible for a large proportion of medication errors in the hospital. Therefore, it is evident that effective tools are needed to improve the gap in communication as patients move between interfaces of care.

The analysis of the information transferred in EMITT letters suggested that selected DRPs may have been prevented with this improved communication after patient discharge. The essential information included in EMITT may enhance the receiving pharmacist’s ability to effectively care for patients. This improved transfer of information could also decrease the need for time-consuming medication reconciliation at the hospital interface as well as other associated methods of reducing discrepancies and DRPs.

Previous studies assessing discharge forms that aimed at communicating information to the community setting indicated that the transfer of medication information as patients move between hospital and ambulatory settings can have a positive impact on patient care. The outcomes in

Medication chart for November 15, 2005.

Documented Allergies:
- Penicillin

<table>
<thead>
<tr>
<th>Medication</th>
<th>Directions</th>
<th>Comments</th>
<th>Morning</th>
<th>Noon</th>
<th>Supper</th>
<th>Bedtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin 40 mg tablet</td>
<td>Take 1 tablet at bedtime</td>
<td>Lowers cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcitriol 0.25 µg capsule</td>
<td>Take 1 capsule once daily</td>
<td>Vitamin D supplement</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium carbonate 1250 mg tablet (500 mg elemental Ca++)</td>
<td>Take 2 tablets three times a day with meals</td>
<td>Lowers phosphate levels</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin 500 mg tablet</td>
<td>Take 1 tablet two times a day for 4 more days Separate from calcium by at least 2 hours</td>
<td>Treats urinary tract infections</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Darbepoetin Inj 60 µg/0.3 mL syringe</td>
<td>Inject 60 µg subcutaneously every Friday</td>
<td>Stimulates production of red blood cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docusate sodium 100 mg capsule</td>
<td>Take 1 capsule two times a day</td>
<td>Softens stool</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ferrous fumarate 300 mg tablet</td>
<td>Take 1 tablet at bedtime</td>
<td>Replaces iron</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Metoprolol 25 mg tablet</td>
<td>Take 2 tablets (50 mg) two times a day</td>
<td>Lowers blood pressure</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omeprazole 20 mg tablet</td>
<td>Take 2 tablets (40 mg) once daily</td>
<td>Lowers stomach acid</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Ramipril 5 mg capsule</td>
<td>Take 1 capsule once daily</td>
<td>Lowers blood pressure</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Acetaminophen 325 mg tablet</td>
<td>Take 1–2 tablets every 4 hours as needed for pain</td>
<td>Decreases pain associated with osteoarthritis; use as needed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If discrepancies occur between the following list and your prescription, please follow the instructions on your medication vials unless your physician has indicated otherwise

Prepared by Cesta, Annemarie, Pharmacist, Phone: 416-340-4800 x1234, Pager: 416-555-8856

Figure 2. Example of a patient medication schedule generated from EMITT. The patient medication schedule provides an up-to-date list of medications for the patient including directions, special comments, or indications and timing of doses.
these studies suggest that most of the recommendations were followed, many problems related to discharge were prevented, and pharmacists were better informed about a patient’s hospitalization, allowing them to better counsel and provide seamless care. EMITT communicates information similar to that identified in previous studies. However, EMITT is unique since it is electronic, automatically interfaces with hospital computerized patient records, and generates a patient discharge medication list and wallet card that are aligned with the list provided to the healthcare provider.

There have been very few recent advances in the study of tools to improve drug information transfer at transition...
points. Our study aims to add to this literature because EMITT was developed through a systematic design process using information gained from the current end users to address the present gap in our ever-changing information transfer system. The elements of EMITT can be easily adapted to other institutions and patient populations to help address DRPs associated with medication information transfer.

LIMITATIONS

Patient outcomes were not explicitly measured as part of our feasibility pilot. However, measuring patient-specific clinical endpoints, such as actual medication discrepancies and DRPs, will be addressed in future research. The main challenges encountered by the pharmacists using EMITT included incorporating the associated workload into daily practice; lack of a timely, accessible, and accurate list of discharge drugs from the physicians; discerning the most relevant information to transfer; and effectively wording issues in a concise and understandable format for the next pharmacist. Future work should aim to study, identify, and incorporate the medication information needs of other potential stakeholders, such as physicians and nurses, to enhance the tool.

Conclusions

By evaluating the needs of patients and pharmacists involved in the medication information transfer process, a functional and practical tool can be created to help address the gap in communication between pharmacists when patients move between interfaces of care. Such a tool can be used in clinical practice to transfer essential medication information to the new healthcare professional caring for the patient to facilitate continuity of care. It is envisioned that the elements of this innovative, electronic tool can be easily adapted to other institutions to improve medication information transfer.

Annemarie Cesta BSPhm, Pharmacist, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
Jana M Bajcar BSPhm MScPhm EdD FCSHP, Associate Professor, Leslie Dan Faculty of Pharmacy, University of Toronto
Stephanie W Ong BSPhm, Pharmacist, Toronto General Hospital, University Health Network
Olavo A Fernandes BSPhm PharmD, Clinical Site Leader, Toronto General Hospital, University Health Network; Assistant Professor, Leslie Dan Faculty of Pharmacy, University of Toronto

Reprints: Dr. Fernandes, Inpatient Pharmacy Department, University Health Network—Toronto General Hospital, 200 Elizabeth St., Gerrard Wing, Ground Floor, Rm. 579, Toronto, Ontario M5G 2C4, Canada, fax 416/340-3685, olavo.fernandes@uhn.on.ca

This study was presented as a poster at the 2005 American College of Clinical Pharmacy Spring Practice and Research Forum, Myrtle Beach, South Carolina, April 10–13, 2005.

We thank Tim Tripp, Svetolik Kovacevic, Anatoly Romanko, and Victor Omelchenko from Shared Information Management Systems (SIMS), University Health Network; Marisa Battistiella and Carmen Ma, pharmacists at Toronto General Hospital; and general internal medicine pharmacists at Toronto General Hospital.

References

EXTRACT

TRASFONDO: La continuidad en la atención de los pacientes es necesaria a medida que estos visitan diferentes farmacéuticos. En estos tiempos, la transferencia adecuada de información sobre medicamentos entre farmacéuticos así como a los pacientes es esencial de manera tal que se puedan prevenir problemas relacionados a medicamentos (DRPs por sus siglas en inglés).

OBJETIVOS: El propósito de este proyecto era desarrollar una herramienta para transferir información sobre medicamentos entre varios farmacéuticos que brindan atención a diferentes pacientes. Como objetivo secundario, se evaluó la herramienta a base de su utilidad en la práctica y la satisfacción de los farmacéuticos que la utilizaron.

MÉTODOS: Se evaluaron las necesidades de los pacientes mediante entrevistas detalladas con pacientes y farmacéuticos y se realizó una revisión de la literatura. Estos datos se utilizaron para desarrollar una herramienta óptima para transferir información sobre medicamentos entre farmacéuticos en diferentes escenarios de práctica. La herramienta fue evaluada en un estudio piloto de viabilidad para determinar el potencial de utilidad de la misma y la satisfacción de los farmacéuticos con ella.

RESULTADOS: La herramienta que se creó, llamada Herramienta de Transferencia Electrónica de Información de Medicamentos (EMITT, Electronic Medication Information Transfer Tool), facilita la comunicación de información sobre medicamentos a farmacéuticos en escenarios ambulatorios, la cual incluye una carta y una lista actualizada de los medicamentos del paciente. Un total de 187 asuntos sobre medicamentos fueron comunicados en 40 cartas de transferencia, lo cual potencialmente previno 134 DRPs si el receptor de la información actuaba sobre la información provista.

CONCLUSIONES: Una herramienta fue creada para ayudar a disminuir la brecha en comunicación que existe entre farmacéuticos cuando los pacientes se mueven de un escenario de atención a otro, mediante una
evaluación de necesidades de los profesionales de la salud involucrados en el proceso de transferencia de información. Se vislumbra que los elementos en nuestra herramienta puedan ser fácilmente adaptados a otras instituciones para mejorar el proceso de transferencia de información.

Homero A Monsanto

RÉSUMÉ

RAPPEL: La continuité des soins est nécessaire lorsque les patients passent d’un rattachement pharmaceutique à l’autre. La transmission appropriée des informations sur leurs traitements médicamenteux, entre pharmaciens autant qu’envers ces patients, est essentielle dans ces situations, afin de prévenir les problèmes d’ordre médicamenteux (DRP).

OBJECTIFS: Le but de ce projet était de développer un outil de transmission des informations sur les traitements entre les divers pharmaciens intervenant dans la prise en charge des mêmes patients. Les objectifs secondaires étaient d’évaluer l’outil quant à son utilité en pratique et à la satisfaction des pharmaciens utilisateurs.

MÉTHODES: Le projet a consisté en une étude de besoins mettant en œuvre des interviews approfondies de patients et de pharmaciens ainsi qu’une revue de littérature. Ces données ont été utilisées pour bâtir un outil optimal de transmission des informations sur les traitements entre pharmaciens de différentes structures de soins. L’outil a été évalué dans une phase pilote de faisabilité quant à son utilité potentielle et à la satisfaction des pharmaciens.

RESULTATS: L’outil élaboré appelé EMITT (Outil Electronique de Transmission des Informations sur les Traitements) facilite la communication des informations sur les traitements aux pharmaciens de ville, comprenant un courrier et une liste actualisée des traitements du patient. Un total de 187 problèmes médicamenteux a été communiqué via 40 courriers de transmissions, qui ont potentiellement évité 348 DRP si le destinataire de l’information s’est servi des éléments fournis.

CONCLUSIONS: Un outil peut être créé pour contribuer à combler le manque de communication entre pharmaciens, lorsque les patients passent d’une structure de soins à l’autre, en évaluant les besoins des professionnels de santé impliqués dans les procédures de transmission d’informations. Il apparaît que les éléments de notre outil peuvent être facilement adaptés à d’autres institutions pour améliorer la transmission d’informations sur les traitements de patients.

Michel Le Duff

Articles published in The Annals…

- Are posted in *The Annals Online* and indexed in PubMed weeks before appearing in print.
- Appear on the prestigious HighWire Press platform at Stanford University, host to the most frequently cited journals.
- Permit readers to access citations to other HighWire journals through free full-text access links.
- Receive extensive peer review and contribute to *The Annals*’ high journal impact factor.

Authors publishing in The Annals realize these additional benefits…

- Quick and easy online manuscript submission for faster turnaround.
- No submission fees or page charges.
- **And more:** visit www.theannals.com and select “Author Information.”